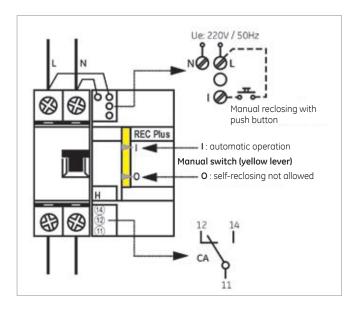
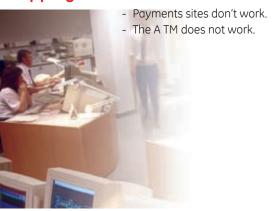


REC Plus


Earth leakage protection with automatic self-reclosing

Earth leakage protection with automatic self-reclosing

Earth leakage protection required by current legislation protects people, but unforeseen trips can also provoke the lack of electrical supply in important installations. In most of the cases (95 %), when your earth leakage protection is tripped, a simple manual reclosing solves the problem because there is no permanent leakage.


If there is no **REC Plus** automatic reconnector, this simple, manual reclosing operation may become a serious problem if there is nobody nearby or if the earth leakage trip is not known.

On house

Shopping centers / Banks

Farms

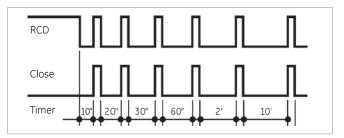
Public lighting Trafic lights

Earth leakage protection with automatic self-reclosing

REC Plus automatically closes the RCCB after a leakage or after a manual disconnection once the timing between re-closes has elapsed.

It is also equipped with an auxiliary contact (LI) to commmand the reclosing system remotely from a push putton. If there is maintainence in the electrical installation of **REC Plus**, the self-reclosing system must be locked OFF. To achieve it, we must fix and lock the yellow lever using a padlock.

- When yellow lever is in 1 position the **REC Plus** is ready to work.
- When yellow lever is in 0 position the **REC Plus** is blocked both electrically and mechanically.

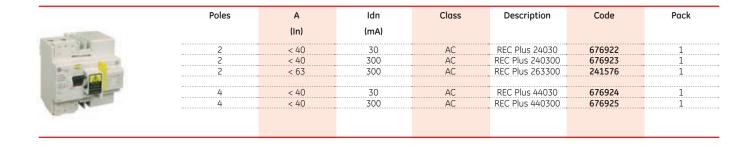

When we move the lever to 0 position we reset the internal counter and the reconnection cycle is reset

ATTENTION!

YELLOW LEVER MUST BE FIXED IN THE 0 POSITION WHEN THERE IS WORKS IN THE INSTALATION OF REC Plus.

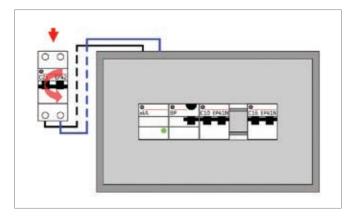
Is also equipped with a free of power output to indicate the status of the protection (connected/disconnected). Terminals Nr 11,12 & 14).

When RCD trip, a sequence of six reclosing attempts is started.

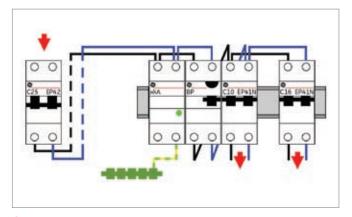


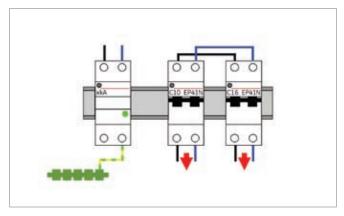
If a reclosing attempt is successful the sequence stops and if there is no further trips the relay is reset after 1 times last reconnection time.

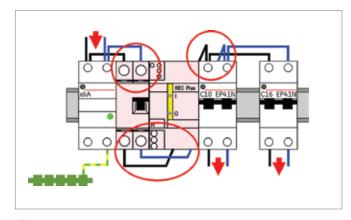
If the relay fails to successful reclose the switching device after 6 reconnections. Then it is locked out preventing any further attempts until it is manually reset.

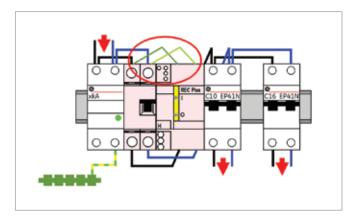

Motor	
Dimensions	3 modules
Un	220/240V - 50/60Hz
Reclosing time comanded	0,3 s < t < 1 s
Auxiliary contact	Imax 2A a 250VAC
	lmax 2A a 24VDC
	Imin 20mA
	terminal: 2,5mm²
Internal relay (inside motor)	
Reconnections number (*)	6
Timing (*)	10, 20, 30, 60, 120, 600 sec.
Reset time	= last reconnection time
RCDs	
	Same features
	than GE RCDs

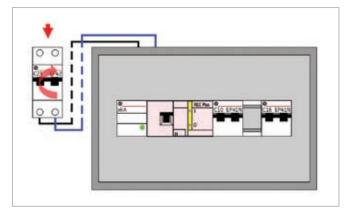
(*) Different reconnections number and/or timing on request




REC Plus


1. From the consumer unit in service, disconnect incoming circuit breaker.


2. Remove the cover


3. Remove the earth leakage switch to be replaced (1)

4. Connect input/output on the REC Plus

5. Connect motor's auxiliary power supply from the REC Plus input

6. Replace the cover and connect main circuit breaker.

(1) If there is no spare modules in the consumer unit, then replace $3\times1+N$ MCBs (2 modules) with $3\times1+N$ MCBs (1 module)